
International Journal of  Theoretical Physics, Vot. 9, No. 6 (1974),  pp.  425-437  

On the Focusing of Gravitational Radiation 

HANS C. OHANIAN 

R ensselaer Polytechnic Institute, Troy, New York 12181 

Received: 18 May 1973 

Abstract 

We investigate the  gain in in tensi ty  tha t  can be achieved by  using a massive object  as a 
' lens'  to focus gravitational radiat ion incident  on the  object f rom a point-like source. An  
object o f  m a s s M  produces  a gain in intensi ty  o f  the  order o f  c~GM/Xc z where c~ is a 
numerical  factor which depends  on the  mass  distr ibution and X is the  wavelength of  the  
radiation. For large mass,  the  gain is large, b u t  occurs only in a beam of  small angular 
width.  

1. Introduction 

Some experimental evidence that gravitational radiation is incident on the 
earth, possibly coming from the galactic center, has been reported by Weber 
(1970). Under the assumption that, on the average, the radiation is emitted 
isotropically from near the galactic center, the gravitational energy radiated 
has been estimated as 103 M® per year; this is in disagreement with a limit of 
200M~ per year set by astronomical observations (Sciama et al., 1969). 
Furthermore, each burst of gravitational radiation, if isotropic, carries an 
energy of several solar masses which is astonishingly large for a single event. 
One obvious solution to this embarrassing problem is to suppose that the 
radiation is not isotropic, but somehow concentrated in the direction of the 
earth. Calculations of the focusing of gravitational radiation by the gravitational 
fields surrounding a massive object have been given by Lawrence (1971, 1973) 
and by Campbell & Matzner (1973). These calculations were based on an 
analogy with the focusing of light by gravitational fields (Liebes, 1964). A 
weak gravitational wave of short wavelength propagates along null geodesics 
and is deflected in the same way as light. The deflection of the radiation in 
the gravitational field of a star results in an increase of the observed intensity 
if the star is on, or near, the straight line between the source of radiation and 
the observer. The gravitational field acts as a 'lens'; however, since for rays 
passing through the exterior gravitational fields of a star, the deflection angle 
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decreases with impact parameter, the 'lens' does not form a true focal point 
but only a caustic line. 

The present paper investigates two effects that may be relevant in the case 
of focusing of gravitational radiation, but are not in the case of focusing of 
light. First, since the wavelength of gravitational radiation is much larger than 
that of light (X ~- 2 x 107 cm for Weber's detector), it is possible for some 
sources (e.g., neutron stars) to behave as point  sources; the maximum focused 
intensity is then limited by diffraction effects rather than by the surface 
brightness of the source. Second, gravitational radiation can pass through the 
interior of a star; under these conditions the deflection angle can increase 
with impact parameter and a true focal point is formed. 

The following calculations assume that the gravitational field of the 'lens' 
is weak and that the deflection angle is small. It is also ~ssumed that the 
gravitational wave is weak and has a wavelength short compared to the size of 
the 'lens'. How the radiation is produced witl not concern us; the only 
properties of the source that are relevant to our calculation are that the source 
be small compared to a wavelength and that it illuminate the 'lens' fairly 
uniformly. 

2. Deflection o f  a Ray  

In a gravitational field, weak gravitational waves of sufficiently short wave- 
length move along null geodesics (Isaacson, 1968). This means that the wave 
vector k u, which is a null vector, undergoes parallel transport, 

dkU = - P ~  k e' dx  ~ (2.1) 

We assume that the gravitational field has cylindrical symmetry about the z- 
axis. The deflection of a ray incident from z = - ~ '  with an impact parameter 
b can be calculated by integrating (2.1) from z = - ~  to z = +~. For the case 
of small deflection (weak gravitational field at impact parameter b), the 
calculation may be carried out by methods familiar from Bohr's theory of the 
energy loss in collisions between fast charged particles. The deflection angle is 
given by the simple formula 

O(b) = ~ x (mass inside impact parameter b) (2.2) 
bc 2 

If b is larger than the radius of the star (of mass M), equation (2.2) becomes 

4GM 
= (2.3) O(b) be 2 

which is the familiar deflection formula for light. 
For a star of uniform density with radius R the deflection of a ray with 

impact parameter b < R is then given by (see also Lawrence, 197 ta) 

4GM [ (R 2 - b2) 3/2" 
O(b) = ~ e  2 [t R 3 (2.4) 
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where the factor in brackets represents the fraction of  the volume of  the star 
inside impact  parameter  b. The deflection is plot ted as a function of  b in 
Fig. 1. Since the deflection angle near b = 0 increases linearly with b, such a 
mass distribution will make a fairly good lens for gravitational radiation. All 
rays originating from some source point  and entering the ' lens' not  too  far 
from the center, will come together at an image point.  We will investigate the 
intensity in a later section. 
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Figure 1 .-Deflection angle as a function of impact parameter. Dashed line: potytrope, 
n = 3. Dotted line: sphere of uniform density. Solid line: thin shell. 

For a star with a spherically symmetric mass density p (r), 

I ; 1 
4 GM 47r 

O(b) = ~ c  2 t - - ~  r(r 2 - b2)t /2p dr 

b 

(2.5) 
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Figure 1 shows the result of numerical evaluation of equation (2.5) for the 
special case of the density function 

p(r) = p(o)[O3(r)] 3 (2.6) 

where On(r ) is a Lane-Emden function. The density (2.6)belongs to a poly- 
trope of index n = 3 ; this is a gas sphere held in equilibrium by radiation 
pressure (Chin, 1968). As we will see later, such supermassive stars are capable 
of producing large increases in the intensity of gravitational waves. 

Finally, we remark that the above deflection formulae are approximations 
for a ray that begins at z = - l l  rather than at z = _oo  The approximation is 
good provided b2/ll 2 ~ 1 and R2/l l  2 ~ 1. 

3. Intensity According to Geometrical Optics 

The intensity of  a gravitational wave usually decreases according to the 
1/r 2 taw as the distance from the source increases. However, if a star acting 
as a gravitational lens lies between the source and the observer, then the 
observed intensity can be much larger than the value given by the 1/r 2 law. 
We first investigate the gain in the intensity by means of geometrical optics. 
Only modest gains are to be expected in those regions where geometrical 
optics is applicable; caustic surfaces and lines on which the intensity gain is 
very large must be investigated by wave optics. 

p h 

' 41 o2 

Figure 2.-Deflection of a ray. 

Figure 2 shows the source S, the observer P, and the region O in which 
deflection occurs; all angles are greatly exaggerated. A ray arrives at z =/2 
at a distance h from the axis 

h = b - 1 2 0 2  = b - 1 2 ( 0  - 01) (3.1) 
and 

dh = lz(1/ll  + 1/12 -- O')db (3.2) 

where 0' - dO/db. All the energy incident on the area 2nb db at the 'lens' 
arrives in the area 2rrh dh at z =/2. Hence the intensity at z =/2 is 

2rib db 
I(P) =I(O)  - -  

27rh dh 

b 1 

=I (O)  hl2 (1/ll + 1/12 - 0') 
(3.3) 
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We define the intensity gain as I(P)(ll  + 12)2/I(0)tl 2. This is the factor by 
which the intensity is increased over that given by the I/r 2 law. 

l I + 12t 2 b ! 
(gain) = \ - - ~  ] hl-~z (1/11 + 1/12 -- 0') 

(3.4) 

For an observer on the earth, the relevant case is that with 12 >> ll. In this case 

0 1 
(gain) -- (3.5) 

w (1 - l ~ 0 ' )  

where w = h/12 is the angular distance of  the observer from the axis as seen 
from the star. 

Equation (3.4) gives a divergent result if 

1/11 + 1/12 - 0 ' =  0 (3.6) 

and also if 

h = 0 (3.7) 

The condition (3.6) defines a surface of  revolution h = h (/2), which is the 
focal surface or caustic surface. Condition (3.7) shows that the axis is a 
caustic line. In either case geometrical optics fails and it will be necessary to 
use wave optics. 

In those regions in which geometrical optics is applicable, the intensity 
gain is of  the order of O/w, i.e., the intensity falls off  linearly with increasing 
distance from the axis. Since, in the context of  our weak field approximation, 
we must assume 0 ~ 1, it is clear that  equation (3.5) gives an appreciable 
intensity increase only for small displacements from the axis. 

Finally, it should be noted that there are two rays that reach P since it is 
also possible for radiation to reach P by passing below O and crossing the 
axis somewhere between O and P. Depending on the phase between these two 
rays, the intensity could be up to four times that given by (3.3), or down to 
zero. On the average (3.3) should be multiplied by a factor of  two. 

4. Intensity According to Wave Optics 

To calculate the intensity on and near the caustics we will use the Kirchoff 
integral. Although this integral assumes that the wave is scalar, it can be 
applied to the present (tensor) case because we assume that the angles 01 
and 02 (see Fig. 2) are small. The planes o f  polarization associated with the 
different rays are then nearly parallel and the waves add nearly as scalars.t 

The polarization tensor undergoes parallel transport along the null geodesic. It is 
easy to check that this implies that there is no rotation of the polarization about the z- 
axis; there is a rotation by 0/2 about the y-axis. 
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The Kirchoff integral (Born & Wolf, 1970) gives for the wave amplitude at 
the point P 

Ap = Ao_~i 12 f f ee (b>egk d dr  (4.1) 

where 

k = 21fix (4.2) 

[=t l  +l~ -x~/12 -yrl/lt  +½(1//1 + 1112)(~ 2 +r/2) + ' ' "  (4.3) 

and where (x, y , /2)  are the coordinates of the point P, (0, O, -11) are the 
coordinates of the source S, and (~, 7) are the coordinates of a point in the 
x-y plane; the center of the star is located at ~ = r/= 0 (see Fig. 3). The 

,q 

Z 

Figure 3.-Arbitrary path from source to observer. 

quantity A o gives the amplitude of the wave reaching the star. Equation (4. t) 
differs from the usual Kirchoff integral in that an extra factor exp (i6(b)) 
appears in the integrand; 6(b) is the phase sMft that the gravitational field 
produces in the wave along a ray of impact parameter b; to a sufficient 
approximation we can take b 2 = ~2 + ~72. In equation (4.3) terms of order 
1/l 2 have been neglected. 

The expression (4.1) for Ap is an adequate approximation only if the wave- 
length X is small compared to the size of the 'lens'. If the wavelength is large, 
it is necessary to take into account the scattering of the gravitational wave by 
the curvature of spacetime. 

Introducing polar coordinates in the planes z = 0 and z = 12, 

= b cos ¢ ~7 = b sin ¢ (4.4) 

x = 12w cos ~ y = 12w sin ~ (4.5) 

we can transform (4.1) into (omitting irrelevant phase factors) 

Ap Ao 2_~2~ cc--~- exp [i6(b)]Jo(kbw)exp [½ik(a/ll + 1/12)b2]b db (4.6) 

If k is sufficiently large, this integral can be approximately evaluated by 
the method of  stationary phase (Born & Wolf, 1970) which only takes into 
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aCCount the contribution from the region near the geometrical ray (or rays) 
connecting S andP. Consider first the case k b o w  ~ 1 (where bo is that value 
of b which makes the phase stationary). We can approximate 

Y o(k bow)  ~- 1 - (kbow)2/4  (4.7) 

and the condition of stationary phase is 

d [½k(1/l ,  + 1/12)b 2 + 6(b)] : 0 (4.8) 
db 

By looking at the behavior of wave fronts, it is easy to see that the phase shift 
is related to the deflection angle by 

l d 8  
O ( b ) -  k db (4.9) 

Hence equation (4.8) becomes 

b/ls + b/12 - O(b) = 0 (4.10) 

which is precisely the relation between b and 0 required by geometrical optics 
for a ray that connects S and P (with w = 0). If we designate the solution of 
this equation by bo, then the phase of the integrand in the vicinity ofbo is 
given by 

8(b) + ½k(1/h + 1/t~)b 2 ~ ~(bo) + ~ ( I / I ,  + 1/12)b~ 

+ ½k(b - b o ) 2 [ I / l ,  + 1/12 - 0'(bo)] + " "  (4.11) 

The contribution to the integral (4.6) from the region near b = b o is then 
(omitting again an irrelevant phase factor) 

A p  A o  27rbo [ 7r }1/2 
cx X t2 ½ik[1/l ,  + l /Is  -- O'(ho)] [1 - (kbow)2/4]  (4.12) 

and the intensity gain 

4bo2n 2 [t - (kbow)2/4]  2 {[, + l~] z 
(gain, near axis) 3,11/ll + 1 - ~ 2 ~ [  \ / 7 2 ]  (4.13) 

A necessary condition for the validity of the approximation is that 
kbo; [1/ll + 1//2 - 0'(b o)] >> 1. The phase of the integrand is also stationary 
at 0 = 0, bo = 0. It is easy to check that the contribution to the integral form 
of this region is negligible compared to (4.12). 

Equation (4,13) roughly  indicates that the intensity gain has a large value 
only for an angular distance 

w ~-- 2 /kbo = X/Trbo (4.14) 

away from the axis. Obviously we are dealing with a typical diffraction peak. 
In the case k b o w  >> 1, we can approximate 

J o ( k b w )  ~-- [e i(kbw-È/4) + e-i(kbw+~r/'*)]/x/(2rrkbw) (4.t5) 
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The phase is then stationary at 

b/ll + b/12 - O(b) + w = 0 (4.16) 

The -+ signs in (4.16) correspond, respectively, to rays that reach P after and 
before crossing the axis. In what follows we will ignore the interference 
fringes and only indicate the contribution due to one of the solutions of 
equation (4.16). The intensity gain is 

4bZrr 2 1 ( l t + 1 2 t  2 

X] 1/la + 1/12 - 0'(bo) l 27rkbow ~--~ ] 

bo 1 {'1 +,2) 2 
(4.17) 

ht2 I1/ll + 1/12 - 0'(bo) I ~ - - ~  ] 

in agreement with result (3.4) of geometrical optics. 
If both 

and 1/11 + 1/lz - O/b = 0 (4.18) 

1/ll + 1/h -- 0' = 0 (4.19) 

then equation (4.13) fails. This corresponds to the point P lying on the inter- 
section of the caustic line w = 0 with the caustic surface; this point is the 
image. The consistency of (4.18) and (4.19) demands 

O' = O/b (4.20) 

Obviously this condition is always satisfied at b = 0 where O(b) can be approxi- 
mated by the expression (const.) x b. Since, as is easy to check with equation 
(2.5), 0"(O) = 0, the relevant term in the power series expansion for the phase 
is the fourth-order term 

6(b) + k(1/ l l  + 1/12)b 2 ~ 6 (0 )  - kb400'(0)/24 + . . .  (4.21) 

The integral (4.6) then gives, at w = 0, 

3~r2[ll +/2] 2 1 (4.22) 
(gain, at image) = ~ \ / ' - ~ 2  ] 10"(O) ] 

In equations (4.20) and (4.21) there appear the derivatives 0' and 0" 
evaluated at b = 0. Although these can be found once O(b) is given, it is con- 
venient to express these derivatives directly in terms of the mass density. 
Differentiation of (2.5) yields 

R 
, 87rG 

0 (0 )  : 7 -  | p dr (4.23) 

o 

R 

12rrG f 1 dPdr  (4.24) 
0"(o)= 3 r Trr 

o 
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Finally, we want the intensity on the caustic surface. Points on this surface 
simultaneously satisfy the conditions 

1/l~ + 1/12 - O/b + w/b = 0 (4.25) 

and 

1/la + 1/12 - 0' = 0 (4.26) 

If we use the approximation (4.15) for Yo(kbw), the phase of the integrand is 

6(b) +- kbw  T- ~r/4 + k(1/ l l  + 1/t2 )b 2 ~- (const.) - k(b - bo)3 0"(bo)/6 + . . .  
(4.27) 

where bo fs the solution of (4.25) and (4.26). This results in an intensity gain 

i ( l  I "b/2] 2 b 0 I t ( l / 3 ) ]  2 
(gain, on caustic) = ~ ~ / - ~ )  w 19zr0"(bo)! a/a (4.28) 

The intensity in the vicinity of the image can be calculated by using the 
approximation (4.7); this leads to the following rough estimate of the width 
of the peak, 

X 170"(o) 1/4 
w -- ~ ~ (4.29) 

5. Some  Examples 

We will present some numerical estimates of the focusing produced by 
objects of large mass. The mass distributions we will investigate are (i) a 
polytrope of index n = 3, and (ii) a sphere of uniform density. In the follow- 
ing calculations we assume that 12 >> ll since this is the relevant case for an 
observer on the earth. Assumptions inherent in the calculations of Section 4 
are a small deflection angle (b/ll ~ 1) and the stationary phase approximation 
(kb20 ' >> 1 for the case of equation (4.13)). 

(i) Polytrope, n = 3 

In an equilibrium star with mass larger than 10ZM®, the pressure and internal 
energy are determined mainly by radiation (Zel'dovich & Novikov, 1965). 
This implies that to a first approximation such a star can be described as a 
polytropic gas sphere with n = 3 and density given by equation (2.6) (for this 
equilibrium configuration the mass and the radius are independent parameters). 

For rays of sufficiently large impact parameter, the deflection angle is 

0 = 4GM/bc z 

This expression is, of course, exact for b ~>R, but it also gives a good approxi- 
mation for b t> 0.5R (see Fig. 1). This is not surprising since, in our example, 
the mass is sharply concentrated near the center. With 0 = bill we find that 

b = ~/(4GMll/e2); 0 = x/ (4GM/Ilc  2) (5.1) 
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and hence the gain is 
8~r 2 GM/Xc 2 (5.2) 

This depends only on the mass of the star and on the wavelength of  the 
gravitational radiation; it does not depend on ll or/2. Taking the value 
7t = 1.8 x 107 cm (corresponding to the frequency v = 1-66 x 103 sec -1 to 
which Weber's apparatus is tuned), results in a gain of'~ 

0.65M/M, (5.3) 

The width of  the diffraction peak is roughly X/zrb. By (5.1), this is 

,,it-i;--u) (5.4) 

where R® ~ 6-96 x 10 l° cm. If we assume that 11 ~ t00R® (a much smaller 
value is unlikely; in any case (5.4) is not very sensitive to a change in ll by  a 
factor o f  ten or so), then the width is 

2-8 x 10 .3 x/(M®/M) (5.5) 

Obviously, the width is small whenever the gain is large. Although with an 
increase of  mass the width of the central diffraction peak shrinks, the gain at 
a given angle w increases with mass (we ignore interference fringes). 

The preceding does not  depend explicitly on the value of R. However, R 
must satisfy the condition 

R < O-06R® ,~/(M/M®) (5.6) 

The reason is that according to Fig. 1 rays with b > 0.5R have O/b < 
15GM/R2c 2. This leads to (5.6) if we combine it with O/b ~- I/ l l  = 1/100R®. 

We remark that (5.3) and (5.5) do not really depend on the mass distribu- 
tion. These results are valid whenever the rays pass outside of  (or outside 
most  of) the mass. For example, our 'lens' might consist of  the gravitational 
field surrounding a black hole. 

Rays that pass near the center of  the star contribute very little to the 
intensity unless the distances ll and/2 are related as in equation (4.19). This 
means the observer is at the image of the source. Since 12 is taken as very 
large (image at infinity), only the value of  ll is critical; equation (4.19) 
reduces to 

ll = 1/0' (5 .7 )  

We may say that the source is at the focus, the focal distance being 1/0'. For 
our example, equations (4.23) and (4.24) yield 

0'(0) = 58GM/R 2 c 2 (5.8) 

0 " ( 0 )  = - 4 . 1  x 103GM/R4c 2 (5.9) 

t The condition Ikb20'l ~ 1 becomes 81rGM/~c 2 ~ 1 and is therefore satisfied when- 
ever the gain is large. Thus, (5.3) is valid only if M/Me >> 1, 
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and hence the intensity gain (4.22) becomes 

0.20M/M® (5.10) 

This again depends only on the mass of the star. The result (5.10) is smaller, 
and therefore less interesting, than (5.3). A strong image is possible only if 
the mass distribution is such that O(b) can be very well approximated by a 
linear function over a fairly large region around the origin; this region then 
behaves as a well-corrected lens. For a mass distribution that is concentrated 
near the origin (such as our polytrope of index n = 3) these conditions are 
not satisfied. For a uniform mass density, the conditions are somewhat more 
favorable and the gain due to nearly central rays is somewhat larger than 
(5.3) (see below). 

For our mass distribution, the intensity gain (4.28) on the caustic surface 
is not very large. Even for the caseM/M® = 10 s, the gain calculated from 
equations (4.28) is only a factor of three. 

(ii) Uniform Sphere 

Although spherical mass distributions of uniform density are of little 
astrophysical interest, the focusing produced by such a mass distribution 
may be of some interest because it is the same as that produced by the thin 
rotating massive discs of Bardeen & Wagoner (197t). In the non-relativistic 
case, the rotating thin disc has a mass distribution which is exactly that 
obtained by projecting the mass of a uniform sphere on the plane of the disc. 
Hence, for rays incident parallel to the axis of symmetry, the deflections, and 
gains, produced by sphere and disc are the same. 

For a sphere of uniform density, the intensity gain is largest if the source 
is at the focus (equation (5.7)). The values of 0'(O) and 0"' (O) are 

0'(0) = 6GM/R 2 c 2 (5.1 I) 

0"(0)  = -- 9Glll/R 4 c 2 (5.12) 
which results in a gain of 

0.98M/M® (5.13) 

The width of the region of high intensity is given by equation (4.29). To 
calculate this width we must first specify the value of R. We will arbitrarily 
fix R by the condition 

GM/Rc2= 10 -2 (5.14) 

This condition represents a compromise: we want a small value of R in order 
to obtain a large width, but we must keep GM/Rc 2 reasonably small since 
otherwise our linear approximation fails. The width is then 

1.1(M®/M) 3/4 (5.15) 

According to (5.7) and (5.11), the value of ll must be 

l l /R =Rc2/6GM ~ 17 (5.16) 
so that the focus is quite near the star. 
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Stronger focusing can be achieved by correcting the aberration of  the 'lens'. 
One way to do this is by  increasing the mass density of  the outer layers. 
Figure 1 shows the deflection angle for a thin shell of  radius r (p (r) = 
M6(r -R)/4zrR2). Obviously a superposition of  shell and uniform sphere will 
give improved focusing since the corresponding O(b) is linear out to  larger 
values o f  b. Combining a sphere of  mass M, and a shell of  mass 2.7M increases 
the gain (5.13) by a factor of  ten at the expense of  reducing the width by a 
factor o f  two. The relativistic thin rotating discs of  Bardeen and Wagoner have 
more mass along the outer edge than the non-relativistic discs; however, extra- 
polation of  our results to the relativistic case is questionable. 

6. Conclusion 

Our examples show that the focusing of  gravitational radiation can easily 
give very large gains in the intensity, but  that these large gains only occur in 
a beam of  small angular width. This means that if a focusing mechanism was 
involved in the production of  a burst of  gravitational radiation at the galactic 
center, then the amount of  energy emitted in this burst was much lower than 
that calculated on the assumption of  isotropy of  the intensity received at the 
earth. However, the total amount of  energy emitted by the source in a period 
of, say, one year would still be comparable to, or larger than, that calculated 
on the assumption of  isotropy, since it is to be expected that many bursts of  
radiation miss the earth because the source is not correctly aligned. 

One way to reduce the energy requirements on our galaxy is to suppose 
that the gravitational radiation is extragalactic. For example, if we suppose 
that some other galaxy contains a thin rotating disc of  mass ~ 109M~ in its 
core and a source at the focal point (size of  focal 'point '  is ~ I01~ cm wide, 
10 t~ cm longt),  then the focused intensity at the earth will be the same as 
for an isotropic source of  equal energy at the center of  our galaxy if the 
distance to the other galaxy is 6 x 10 s light years. However, the width of  
the high intensity beam is only 2 x 10 -7 radians and the a priori probability 
of  the earth sitting in this beam is negligible (Ohanian, 1973). 
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